3.1120 \(\int \frac{(d+e x^2) (a+b \tan ^{-1}(c x))}{x^3} \, dx\)

Optimal. Leaf size=77 \[ \frac{1}{2} i b e \text{PolyLog}(2,-i c x)-\frac{1}{2} i b e \text{PolyLog}(2,i c x)-\frac{d \left (a+b \tan ^{-1}(c x)\right )}{2 x^2}+a e \log (x)-\frac{1}{2} b c^2 d \tan ^{-1}(c x)-\frac{b c d}{2 x} \]

[Out]

-(b*c*d)/(2*x) - (b*c^2*d*ArcTan[c*x])/2 - (d*(a + b*ArcTan[c*x]))/(2*x^2) + a*e*Log[x] + (I/2)*b*e*PolyLog[2,
 (-I)*c*x] - (I/2)*b*e*PolyLog[2, I*c*x]

________________________________________________________________________________________

Rubi [A]  time = 0.0991435, antiderivative size = 77, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.316, Rules used = {4980, 4852, 325, 203, 4848, 2391} \[ \frac{1}{2} i b e \text{PolyLog}(2,-i c x)-\frac{1}{2} i b e \text{PolyLog}(2,i c x)-\frac{d \left (a+b \tan ^{-1}(c x)\right )}{2 x^2}+a e \log (x)-\frac{1}{2} b c^2 d \tan ^{-1}(c x)-\frac{b c d}{2 x} \]

Antiderivative was successfully verified.

[In]

Int[((d + e*x^2)*(a + b*ArcTan[c*x]))/x^3,x]

[Out]

-(b*c*d)/(2*x) - (b*c^2*d*ArcTan[c*x])/2 - (d*(a + b*ArcTan[c*x]))/(2*x^2) + a*e*Log[x] + (I/2)*b*e*PolyLog[2,
 (-I)*c*x] - (I/2)*b*e*PolyLog[2, I*c*x]

Rule 4980

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> With
[{u = ExpandIntegrand[(a + b*ArcTan[c*x])^p, (f*x)^m*(d + e*x^2)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b,
 c, d, e, f, m}, x] && IntegerQ[q] && IGtQ[p, 0] && ((EqQ[p, 1] && GtQ[q, 0]) || IntegerQ[m])

Rule 4852

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcTa
n[c*x])^p)/(d*(m + 1)), x] - Dist[(b*c*p)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcTan[c*x])^(p - 1))/(1 + c^
2*x^2), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[p, 0] && (EqQ[p, 1] || IntegerQ[m]) && NeQ[m, -1]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 4848

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))/(x_), x_Symbol] :> Simp[a*Log[x], x] + (Dist[(I*b)/2, Int[Log[1 - I*c*x
]/x, x], x] - Dist[(I*b)/2, Int[Log[1 + I*c*x]/x, x], x]) /; FreeQ[{a, b, c}, x]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rubi steps

\begin{align*} \int \frac{\left (d+e x^2\right ) \left (a+b \tan ^{-1}(c x)\right )}{x^3} \, dx &=\int \left (\frac{d \left (a+b \tan ^{-1}(c x)\right )}{x^3}+\frac{e \left (a+b \tan ^{-1}(c x)\right )}{x}\right ) \, dx\\ &=d \int \frac{a+b \tan ^{-1}(c x)}{x^3} \, dx+e \int \frac{a+b \tan ^{-1}(c x)}{x} \, dx\\ &=-\frac{d \left (a+b \tan ^{-1}(c x)\right )}{2 x^2}+a e \log (x)+\frac{1}{2} (b c d) \int \frac{1}{x^2 \left (1+c^2 x^2\right )} \, dx+\frac{1}{2} (i b e) \int \frac{\log (1-i c x)}{x} \, dx-\frac{1}{2} (i b e) \int \frac{\log (1+i c x)}{x} \, dx\\ &=-\frac{b c d}{2 x}-\frac{d \left (a+b \tan ^{-1}(c x)\right )}{2 x^2}+a e \log (x)+\frac{1}{2} i b e \text{Li}_2(-i c x)-\frac{1}{2} i b e \text{Li}_2(i c x)-\frac{1}{2} \left (b c^3 d\right ) \int \frac{1}{1+c^2 x^2} \, dx\\ &=-\frac{b c d}{2 x}-\frac{1}{2} b c^2 d \tan ^{-1}(c x)-\frac{d \left (a+b \tan ^{-1}(c x)\right )}{2 x^2}+a e \log (x)+\frac{1}{2} i b e \text{Li}_2(-i c x)-\frac{1}{2} i b e \text{Li}_2(i c x)\\ \end{align*}

Mathematica [C]  time = 0.0047646, size = 86, normalized size = 1.12 \[ -\frac{b c d \text{Hypergeometric2F1}\left (-\frac{1}{2},1,\frac{1}{2},-c^2 x^2\right )}{2 x}+\frac{1}{2} i b e \text{PolyLog}(2,-i c x)-\frac{1}{2} i b e \text{PolyLog}(2,i c x)-\frac{a d}{2 x^2}+a e \log (x)-\frac{b d \tan ^{-1}(c x)}{2 x^2} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((d + e*x^2)*(a + b*ArcTan[c*x]))/x^3,x]

[Out]

-(a*d)/(2*x^2) - (b*d*ArcTan[c*x])/(2*x^2) - (b*c*d*Hypergeometric2F1[-1/2, 1, 1/2, -(c^2*x^2)])/(2*x) + a*e*L
og[x] + (I/2)*b*e*PolyLog[2, (-I)*c*x] - (I/2)*b*e*PolyLog[2, I*c*x]

________________________________________________________________________________________

Maple [A]  time = 0.053, size = 117, normalized size = 1.5 \begin{align*} -{\frac{ad}{2\,{x}^{2}}}+ae\ln \left ( cx \right ) -{\frac{\arctan \left ( cx \right ) bd}{2\,{x}^{2}}}+b\arctan \left ( cx \right ) e\ln \left ( cx \right ) +{\frac{i}{2}}be\ln \left ( cx \right ) \ln \left ( 1+icx \right ) -{\frac{i}{2}}be\ln \left ( cx \right ) \ln \left ( 1-icx \right ) +{\frac{i}{2}}be{\it dilog} \left ( 1+icx \right ) -{\frac{i}{2}}be{\it dilog} \left ( 1-icx \right ) -{\frac{b{c}^{2}d\arctan \left ( cx \right ) }{2}}-{\frac{bcd}{2\,x}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)*(a+b*arctan(c*x))/x^3,x)

[Out]

-1/2*a*d/x^2+a*e*ln(c*x)-1/2*b*arctan(c*x)*d/x^2+b*arctan(c*x)*e*ln(c*x)+1/2*I*b*e*ln(c*x)*ln(1+I*c*x)-1/2*I*b
*e*ln(c*x)*ln(1-I*c*x)+1/2*I*b*e*dilog(1+I*c*x)-1/2*I*b*e*dilog(1-I*c*x)-1/2*b*c^2*d*arctan(c*x)-1/2*b*c*d/x

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{1}{2} \,{\left ({\left (c \arctan \left (c x\right ) + \frac{1}{x}\right )} c + \frac{\arctan \left (c x\right )}{x^{2}}\right )} b d + b e \int \frac{\arctan \left (c x\right )}{x}\,{d x} + a e \log \left (x\right ) - \frac{a d}{2 \, x^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)*(a+b*arctan(c*x))/x^3,x, algorithm="maxima")

[Out]

-1/2*((c*arctan(c*x) + 1/x)*c + arctan(c*x)/x^2)*b*d + b*e*integrate(arctan(c*x)/x, x) + a*e*log(x) - 1/2*a*d/
x^2

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{a e x^{2} + a d +{\left (b e x^{2} + b d\right )} \arctan \left (c x\right )}{x^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)*(a+b*arctan(c*x))/x^3,x, algorithm="fricas")

[Out]

integral((a*e*x^2 + a*d + (b*e*x^2 + b*d)*arctan(c*x))/x^3, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b \operatorname{atan}{\left (c x \right )}\right ) \left (d + e x^{2}\right )}{x^{3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)*(a+b*atan(c*x))/x**3,x)

[Out]

Integral((a + b*atan(c*x))*(d + e*x**2)/x**3, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x^{2} + d\right )}{\left (b \arctan \left (c x\right ) + a\right )}}{x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)*(a+b*arctan(c*x))/x^3,x, algorithm="giac")

[Out]

integrate((e*x^2 + d)*(b*arctan(c*x) + a)/x^3, x)